Carotid stenosis and the cognitive function

Laszlo K. Sztriha,*, Dezso Nemeth, Tamas Sefcsik, Laszlo Vecsei

Aim of Preventing a Future Stroke[4–6]. These procedures may also influence the cognitive function, but the published data are conflicting as to the direction of this cognitive change [7,8]. The exact mechanisms whereby a cognitive improvement or worsening may occur in association with carotid interventions likewise largely remain unidentified. It is unclear whether a cognitive assessment may facilitate decisions relating to the treatment of carotid stenosis.

The purpose of this review is to summarize available knowledge on the risk and possible pathomechanisms of cognitive impairment in patients with carotid stenosis, and on the influence of carotid interventions on cognitive functioning.

2. Assessment of Cognitive Function

In classical neurology, the term neurologic deficit relates to the loss of motor or sensory functions. However, mapping of the anatomical background of the impairment may be facilitated by examination of the cognitive functions. The term cognitive deficit refers to the loss of one or more cognitive functions. The various cognitive functions are connected with different neural networks/anatomical regions in the brain. Modern cognitive neuropsychology in conjunction with cognitive psychology and cognitive neuroscience has devised sophisticated methods with which to assess the different cognitive functions, thereby promoting the neurological diagnosis and a deeper understanding of the impairment or disease.

In clinical practice, the Mini-Mental State Examination (MMSE) [9] still remains the most commonly applied screening tool. The MMSE is

* Corresponding author. Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary. Tel.: +36 62 545597.
E-mail address: sztriha@nepsy.szote.u-szeged.hu (L.K. Sztriha).

0022-510X/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.jns.2009.02.307
Pathomechanism of cognitive impairment in carotid stenosis

A silent brain infarction may be an intermediate between a carotid stenosis and a cognitive impairment. Lacunar infarcts have been reported to be more frequent in patients with asymptomatic carotid stenoses as compared with controls [25]. CT has been stated to reveal a silent infarction in 15–19% of patients with asymptomatic stenoses [27,28]. A more frequent occurrence of lesions on the side of the study

Fig. 1. Interdependence of vascular risk factors, stroke, carotid stenosis and cognitive impairment. See text for explanation. DL, dyslipidemia, DM, diabetes mellitus, HT, hypertension.
artery has been reported by some investigators [27], but an even distribution between the ipsi- and contralateral sides has been observed by others [28]. The MRI presence of silent brain infarcts in the general population has been concluded to increase the risk of dementia, and subjects with silent infarcts displayed a steeper decline in cognitive function than those without silent infarcts [29]. Interestingly, not only silent infarctions, but also white matter changes may play a role. A graded relationship has been detected between the numbers of carotid plaques and periventricular white matter lesions [30]. There is evidence that white matter lesions are involved in the pathogenesis of a cognitive impairment [31].

The two important mechanisms implicated in a carotid stenosis-related cognitive impairment, either with or without the presence of a silent brain infarction, are embolization and hypoperfusion. A recent study indicated that spontaneous cerebral emboli, as detected by a 1-hour transcranial Doppler monitoring of the middle cerebral artery, were significantly more frequent in patients with both Alzheimer’s disease and vascular dementia than in the controls [32]. Although a significant association between severe carotid disease and spontaneous cerebral emboli was observed only among the controls, and not in the demented patients, this study still highlights the potential pathogenic role of cerebral embolization in a cognitive impairment. Spontaneous cerebral emboli are also associated with an accelerated decline in cognition in demented patients [33]. However, in a cohort of older people, the cognitive decline was not associated with asymptomatic spontaneous cerebral embolization, but rather with higher age, a history of stroke and the presence of carotid stenosis [34]. Arguments against embolization as the main mechanism of the cognitive impairment in carotid stenosis include the observations from the Tromsø Study [25] and the Cardiovascular Health Study [26], where the cognitive impairment in the patients with carotid stenoses was independent of the vascular lesions revealed by MRI. However, microembolization does not necessarily lead to MRI lesions.

Brain hypoperfusion may be a consequence of a carotid stenosis [35]. Furthermore, certain evidence suggests that cerebral hypoperfusion may contribute to the onset of clinical dementia [36]. The graded relationship of a cognitive impairment to the degree of carotid stenosis observed in the Tromse Study could support the role of a hemodynamic compromise, but the degree of stenosis was low in most patients, not reaching the level of hemodynamic significance [25]. The possible pathogenic role of hypoperfusion in a cognitive impairment was also suggested by two studies of patients with heart failure [37,38], a condition characterized by impaired hemodynamics.

5. Carotid interventions and cognitive function

Several studies have demonstrated an improvement, others no change, and still others a decline in neuropsychological performance following CEA. A systematic review of 28 studies on the impact of CEA upon the cognitive functioning [7] found that a majority (16) of the papers reported an improvement in cognition after surgery, while a substantial minority (11) detected no change, and a deterioration was observed in one investigation. Some benefit from surgery was commonly revealed by tests of verbal fluency and memory. A cognitive improvement was the more likely, the longer the time interval between CEA and assessment. Given the conflicting findings and the differences in many methodological factors in the various studies, it was not possible to draw any clear-cut conclusion regarding the impact of CEA upon cognition.

In a 5-year follow-up study of 1659 patients with asymptomatic carotid stenoses, there was no difference in mean MMSE scores between those receiving medical therapy and those undergoing CEA [39]. There was a gradual decline in the mean scores over time, but this trend was not significant and occurred at the same rate in each group.

Heyer et al. utilized a battery of neuropsychological tests to evaluate 120 patients undergoing CEA for symptomatic or asymptomatic stenosis, and found that approximately 80% of them exhibited a decline in one or more test scores, while 60% had one or more improved test scores at hospital discharge [40]. The percentage of declined test scores was lower and that of improved test scores higher in the follow-up examinations at 1 and 5 months. A decline in performance was seen most commonly in the verbal memory tests, whereas an improved performance was observed most frequently in the executive and motor tests. Another study by the same group indicated that the cognitive decline following CEA was unrelated to the general anesthesia [41]. Predictors of a neurocognitive decline after CEA include advanced age, diabetes, obesity, the preoperative monocyte count and the presence of the APOE-ε4 allele [42–44].

Substantially fewer data are available concerning the cognitive outcome of CAS. Some studies have reported an improved performance following CAS [45,46], whereas the authors of another investigation concluded that, although there had been no significant change in most patients, an improvement or decline may be expected in individual neuropsychological domains [47]. A further investigation in which the cognitive effects of CEA and CAS were compared in symptomatic cases demonstrated similar magnitudes of changes (both in improvement and in worsening) in the two groups following the procedures [8].

As concerns the mechanisms involved in the cognitive changes associated with carotid interventions, an improvement in cognitive functioning following CEA or CAS may be expected from the reduced embolism and the improved hemodynamics. Alternatively, a deterioration in cognition may result from a perioperative impairment in perfusion pressure or procedure-related showers of emboli released into the cerebral circulation. Declines in cognitive function after CEA have been associated with elevations of the serum level of protein S100B, a marker of glial cell death, indicating the occurrence of cerebral injury [48]. Neuropsychological deficits after routine cardiopulmonary bypass appeared to be related to the number of microemboli delivered during surgery [49]. Intraoperative embolization during CEA, as detected by transcranial Doppler, was reported to be correlated with the postoperative cognitive deterioration [50]. Interestingly, another study of patients undergoing CEA or CAS did not indicate any correlation between the inferior cognitive outcome and transcranial Doppler-detected procedural embolization or ischemia, though the case numbers were relatively low [51]. Despite a probably higher rate of procedural embolization [52,53], endovascular management has not generally been associated with a more extensive cognitive deterioration than in the case of CEA [8,51]. As regards the role of hemodynamic factors, longer cross-clamp times during CEA have been associated with a higher incidence of a cognitive dysfunction [54]. The improvement in cognitive function following carotid reconstruction may be greater in patients with low flow-endangered brains than in those with hemodynamically insignificant stenoses [55,56].

6. Conclusion

A carotid artery stenosis appears to be an independent risk factor for a cognitive impairment. The main mechanisms that lead to deficits in cognitive functioning are embolization and hypoperfusion. Carotid interventions may leave the neuropsychological performance unchanged, or may result in a decline or an improvement. CAS may not be different from CEA from the aspect of the cognitive outcome. There is no evidence to support the performance of prophylactic CEA or CAS with the aim of preventing a cognitive decline in otherwise asymptomatic patients.

Acknowledgment

Our research was supported by the Hungarian National Research Fund (OTKA grant F 61943).

